rev 0.3

### 2.5V or 3.3V, 200-MHz, 12-Output Zero Delay Buffer

## Features

- Output frequency range: 8.33 MHz to 200 MHz
- Input frequency range: 6.25 MHz to 125 MHz
- 2.5 V or 3.3 V operation
- Split $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ outputs
- $\pm 2 \%$ max Output duty cycle variation
- 12 clock outputs: drive up to 24 clock lines
- One feedback output
- Three reference clock inputs: crystal or LVCMOS
- 300 pS max output-output skew
- Phase-locked loop (PLL) bypass mode
- 'SpreadTrak'
- Output enable/disable
- Pin-compatible with CY29772, MPC9772 and MPC972
- Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 52 pin 1.0 mm TQFP package
- RoHS Compliance


## Functional Description

The ASM5I9772A is a low-voltage high-performance 200 MHz PLL-based zero delay buffer, designed for highspeed clock-distribution applications.

The ASM5I9772A features one on-chip crystal oscillator and two LVCMOS reference clock inputs and provides 12 outputs partitioned in three banks of four outputs each. Each bank divides the VCO output per SEL(A:C) settings, see Functional Table.

These dividers allow output to input ratios of $8: 1,6: 1,5: 1$, $4: 1,3: 1,8: 3,5: 2,2: 1,5: 3,3: 2,4: 3,5: 4,1: 1$, and $5: 6$. Each LVCMOS-compatible output can drive $50 \Omega$ series or parallel-terminated transmission lines. For seriesterminated transmission lines, each output can drive one or two traces, giving the device an effective fanout of 1:24.

The PLL is ensured stable given that the VCO is configured to run between 200 MHz and 500 MHz . This allows a wide range of output frequencies from 8 MHz to 200 MHz . For normal operation, the external feedback input, FB_IN, is connected to the feedback output, FB_OUT. The internal VCO is running at multiples of the input reference clock set by the feedback divider, see Frequency Table.

When PLL_EN is LOW, PLL is bypassed and the reference clock directly feeds the output dividers. This mode is fully static and the minimum input clock frequency specification does not apply.

## Block Diagram


rev 0.3

## Pin Configuration


rev 0.3

## Pin Description ${ }^{1}$

| Pin | Name | I/O | Type | Description |
| :---: | :---: | :---: | :---: | :---: |
| 11 | XIN | I | Analog | Crystal oscillator input. |
| 12 | XOUT | O | Analog | Crystal oscillator output. |
| 9 | TCLK0 | I, PU | LVCMOS | LVCMOS/LVTTL reference clock input. |
| 10 | TCLK1 | I, PU | LVCMOS | LVCMOS/LVTTL reference clock input. |
| 44, 46, 48, 50 | QA(3:0) | 0 | LVCMOS | Clock output bank A. |
| 32, 34, 36, 38 | QB(3:0) | 0 | LVCMOS | Clock output bank B. |
| 16, 18, 21, 23 | QC(3:0) | 0 | LVCMOS | Clock output bank C. |
| 29 | FB_OUT | 0 | LVCMOS | Feedback clock output. Connect to FB_IN for normal operation. |
| 31 | FB_IN | I, PU | LVCMOS | Feedback clock input. Connect to FB_OUT for normal operation. This input should be at the same voltage rail as input reference clock. See Table 1. |
| 25 | SYNC | 0 | LVCMOS | Synchronous pulse output. This output is used for system synchronization. |
| 6 | PLL_EN | I, PU | LVCMOS | PLL enable/bypass input. When Low, PLL is disabled/bypassed and the input clock connects to the output dividers. |
| 2 | MR\#/OE | I, PU | LVCMOS | Master reset and Output enable/disable input. See Table 2 |
| 8 | TCLK_SEL | I, PU | LVCMOS | LVCMOS Clock reference select input. See Table 2. |
| 7 | REF_SEL | I, PU | LVCMOS | LVCMOS/LVPECL Reference select input. See Table 2. |
| 52 | VCO_SEL | I, PU | LVCMOS | VCO Operating frequency select input. See Table 2. |
| 14 | INV_CLK | I, PU | LVCMOS | QC(2,3) Phase selection input. See Table 2. |
| 5, 26, 27 | FB_SEL(2:0) | I, PU | LVCMOS | Feedback divider select input. See Table 6. |
| 42, 43 | SELA(1,0) | I, PU | LVCMOS | Frequency select input, Bank A. See Table 3. |
| 40, 41 | SELB(1,0) | I, PU | LVCMOS | Frequency select input, Bank B. See Table 4. |
| 19, 20 | SELC(1,0) | I, PU | LVCMOS | Frequency select input, Bank C. See Table 5. |
| 3 | SCLK | I, PU | LVCMOS | Serial Clock input. |
| 4 | SDATA | I, PU | LVCMOS | Serial Data input. |
| 45, 49 | VDDQA | Supply | VDD | 2.5V or 3.3V Power supply for bank A output clocks ${ }^{2,3}$. |
| 33, 37 | VDDQB | Supply | VDD | 2.5V or 3.3V Power supply for bank B output clocks. ${ }^{2,3}$ |
| 22, 17 | VDDQC | Supply | VDD | 2.5V or 3.3V Power supply for bank C output clocks. ${ }^{2,3}$ |
| 13 | AVDD | Supply | VDD | 2.5V or 3.3V Power supply for PLL. ${ }^{2,3}$ |
| 28 | VDD | Supply | VDD | 2.5V or 3.3V Power supply for core and inputs. ${ }^{\text {2,3 }}$ |
| 1 | AVSS | Supply | Ground | Analog Ground. |
| $\begin{aligned} & 15,24,30, \\ & 35,39,47,51 \end{aligned}$ | VSS | Supply | Ground | Common Ground. |

Note: 1.PU = Internal pull up, PD = Internal pull down.
2. A $0.1 \mu \mathrm{~F}$ bypass capacitor should be placed as close as possible to each positive power pin ( $<0.2$ "). If these bypass capacitors are not close to the pins their high-frequency filtering characteristics will be cancelled by the lead inductance of the traces.
3 AVDD and VDD pins must be connected to a power supply level that is at least equal or higher than that of VDDQA, VDDQB, and VDDQC power supply pins.
rev 0.3
'SpreadTrak'

Many systems being designed now utilize a technology called Spread Spectrum Frequency Timing Generation. ASM5I9772A is designed so as not to filter off the Spread Spectrum feature of the Reference Input, assuming it exists.

When a zero delay buffer is not designed to pass the Spread Spectrum feature through, the result is a significant amount of tracking skew which may cause problems in the systems requiring synchronization.

## Table 1. Frequency Table

| Feedback Output <br> Divider | VCO | Input Frequency Range <br> (AVDD = 3.3V) | Input Frequency Range <br> (AVDD =2.5V) |
| :---: | :--- | :--- | :--- |
| $\div 4$ | Input Clock * 4 | 50 MHz to 125 MHz | 50 MHz to 95 MHz |
| $\div 6$ | Input Clock * 6 | 33.3 MHz to 83.3 MHz | 33.3 MHz to 63.3 MHz |
| $\div 8$ | Input Clock * 8 | 25 MHz to 62.5 MHz | 25 MHz to 47.5 MHz |
| $\div 10$ | Input Clock * 10 | 20 MHz to 50 MHz | 20 MHz to 38 MHz |
| $\div 12$ | Input Clock * 12 | 16.6 MHz to 41.6 MHz | 16.6 MHz to 31.6 MHz |
| $\div 16$ | Input Clock * 16 | 12.5 MHz to 31.25 MHz | 12.5 MHz to 23.75 MHz |
| $\div 20$ | Input Clock * 20 | 10 MHz to 25 MHz | 10 MHz to 19 MHz |
| $\div 24$ | Input Clock * 24 | 8.3 MHz to 20.8 MHz | 8.3 MHz to 15.8 MHz |
| $\div 32$ | Input Clock * 32 | 6.25 MHz to 15.625 MHz | 6.25 MHz to 11.8 MHz |
| $\div 40$ | Input Clock * 40 | 5 MHz to 12.5 MHz | 5 MHz to 9.5 MHz |

Table 2. Function Table (Configuration Controls)

| Control | Default | $\mathbf{0}$ | $\mathbf{1}$ |
| :---: | :---: | :--- | :--- |
| REF_SEL | 1 | TCLK0, TCLK1 | Crystal oscillator |
| TCLK_SEL | 1 | TCLK0 | TCLK1 |
| VCO_SEL | 1 | VCO $\div 2$ (low input frequency range) | VCO $\div 1$ (high input frequency range) |
| PLL_EN | 1 | Bypass mode, PLL disabled. The input clock <br> connects to the output dividers | PLL enabled. The VCO output <br> connects to the output dividers |
| INV_CLK | 1 | QC2 and QC3 are in phase with QC0 and QC1 | QC2 and QC3 are inverted (180 <br> phase shift) with respect to QC0 and <br> QC1 |
| MR\#/OE | 1 | Outputs disabled (three-state) and reset of the <br> device. During reset/output disable the PLL feedback <br> loop is open and the VCO running at its minimum <br> frequency. The device is reset by the internal <br> power-on reset (POR) circuitry during power-up. | Outputs enabled |

rev 0.3

Table 3. Function Table (Bank A)

| VCO_SEL | SELA1 | SELA0 | QA(0:3) |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\div 8$ |
| 0 | 0 | 1 | $\div 12$ |
| 0 | 1 | 0 | $\div 16$ |
| 0 | 1 | 1 | $\div 24$ |
| 1 | 0 | 0 | $\div 4$ |
| 1 | 0 | 1 | $\div 6$ |
| 1 | 1 | 0 | $\div 8$ |
| 1 | 1 | 1 | $\div 12$ |

Table 4. Function Table (Bank B)

| VCO_SEL | SELB1 | SELB0 | QB(0:3) |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\div 8$ |
| 0 | 0 | 1 | $\div 12$ |
| 0 | 1 | 0 | $\div 16$ |
| 0 | 1 | 1 | $\div 20$ |
| 1 | 0 | 0 | $\div 4$ |
| 1 | 0 | 1 | $\div 6$ |
| 1 | 1 | 0 | $\div 8$ |
| 1 | 1 | 1 | $\div 10$ |

Table 5. Function Table (Bank C)

| VCO_SEL | SELC1 | SELC0 | QC(0:3) |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\div 4$ |
| 0 | 0 | 1 | $\div 8$ |
| 0 | 1 | 0 | $\div 12$ |
| 0 | 1 | 1 | ${ }^{3} 16$ |
| 1 | 0 | 0 | $\div 2$ |
| 1 | 0 | 1 | $\div 4$ |
| 1 | 1 | 0 | $\div 6$ |
| 1 | 1 | 1 | $\div 8$ |

Table 6. Function Table (FB_OUT)

| VCO_SEL | FB_SEL2 | FB_SEL1 | FB_SELO | FB_OUT |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $\div 8$ |
| 0 | 0 | 0 | 1 | $\div 12$ |
| 0 | 0 | 1 | 0 | $\div 16$ |
| 0 | 0 | 1 | 1 | $\div 20$ |
| 0 | 1 | 0 | 0 | $\div 16$ |
| 0 | 1 | 0 | 1 | $\div 24$ |
| 0 | 1 | 1 | 0 | $\div 32$ |
| 0 | 1 | 1 | 1 | $\div 40$ |
| 1 | 0 | 0 | 0 | $\div 4$ |
| 1 | 0 | 0 | 1 | $\div 6$ |
| 1 | 0 | 1 | 0 | $\div 8$ |
| 1 | 0 | 1 | 1 | $\div 10$ |
| 1 | 1 | 0 | 0 | $\div 8$ |
| 1 | 1 | 0 | 1 | $\div 12$ |
| 1 | 1 | 1 | 0 | $\div 16$ |
| 1 | 1 | 1 | 1 | $\div 20$ |

## Absolute Maximum Conditions

| Parameter | Description | Condition | Min | Max | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: |
| VDD | DC Supply Voltage |  | -0.3 | 5.5 | V |
| VDD | DC Operating Voltage | Functional | 2.375 | 3.465 | V |
| $\mathrm{~V}_{\text {IN }}$ | DC Input Voltage | Relative to VSS | -0.3 | VDD+ 0.3 | V |
| $\mathrm{~V}_{\text {OUT }}$ | DC Output Voltage | Relative to VSS | -0.3 | $\mathrm{VDD}+0.3$ | V |
| $\mathrm{~V}_{\mathrm{TT}}$ | Output termination Voltage |  | - | $\mathrm{VDD} \div 2$ | V |
| LU | Latch-up Immunity | Functional | 200 | - | mA |
| $\mathrm{R}_{\text {PS }}$ | Power Supply Ripple | Ripple Frequency $<100 \mathrm{kHz}$ | - | 150 | $\mathrm{mVp}-\mathrm{p}$ |
| $\mathrm{T}_{\mathrm{S}}$ | Temperature, Storage | Non-functional | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{A}}$ | Temperature, Operating Ambient | Functional | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{J}}$ | Temperature, Junction | Functional | - | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\varnothing_{\mathrm{JC}}$ | Dissipation, Junction to Case | Functional | - | 23 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\varnothing_{\mathrm{JA}}$ | Dissipation, Junction to Ambient | Functional | - | 55 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{ESD}_{\mathrm{H}}$ | ESD Protection (Human Body Model) |  |  | 2000 | - |
| FIT | Failure in Time | Manufacturing test |  | V |  |

rev 0.3
DC Electrical Specifications (VDD $=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )

| Parameter | Description | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIL | Input Voltage, Low | LVCMOS | - | - | 0.7 | V |
| $\mathrm{V}_{\mathrm{H}}$ | Input Voltage, High | LVCMOS | 1.7 | - | VDD+0.3 | V |
| $\mathrm{V}_{\mathrm{oL}}$ | Output Voltage, Low ${ }^{1}$ | $\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$ | - | - | 0.6 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage, High ${ }^{1}$ | $\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$ | 1.8 | - | - | V |
| $\mathrm{I}_{1}$ | Input Current, Low ${ }^{2}$ | VIL= VSS | - | - | -100 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input Current, High ${ }^{2}$ | VIL= VDD | - | - | 100 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {DDA }}$ | PLL Supply Current | AVDD only | - | 5 | 10 | mA |
| $\mathrm{I}_{\text {DD }}$ | Quiescent Supply Current | All VDD pins except AVDD | - | - | 8 | mA |
| $\mathrm{I}_{\mathrm{DD}}$ | Dynamic Supply Current | Outputs loaded @ 100 MHz | - | 135 | - | mA |
| $\mathrm{C}_{\text {IN }}$ | Input Pin Capacitance |  | - | 4 | - | pF |
| $\mathrm{Z}_{\text {OUt }}$ | Output Impedance |  | 14 | 18 | 22 | $\Omega$ |

Note: 1. Driving one $50 \Omega$ parallel-terminated transmission line to a termination voltage of VTT. Alternatively, each output drives up to two $50 \Omega$ series-terminated transmission lines
2. Inputs have pull-up or pull-down resistors that affect the input current.

DC Electrical Specifications (VDD $=3.3 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Description | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IL }}$ | Input Voltage, Low | LVCMOS | - | - | 0.8 | V |
| $\mathrm{V}_{\text {IH }}$ | Input Voltage, High | LVCMOS | 2.0 | - | VDD + 0.3 | V |
| $\mathrm{V}_{\mathrm{oL}}$ | Output Voltage, Low ${ }^{1}$ | $\mathrm{I}_{\mathrm{ot}}=24 \mathrm{~mA}$ | - | - | 0.55 | V |
|  |  | $\mathrm{T}_{\mathrm{OL}}=12 \mathrm{~mA}$ | - | - | 0.30 |  |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage, High ${ }^{1}$ | $\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$ | 2.4 | - | - | V |
| $\mathrm{I}_{\text {L }}$ | Input Current, Low ${ }^{2}$ | $\mathrm{V}_{\mathrm{L}}=\mathrm{VSS}$ | - | - | -100 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input Current, High ${ }^{2}$ | $\mathrm{V}_{11}=\mathrm{VDD}$ | - | - | 100 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {DAA }}$ | PLL Supply Current | AVDD only | - | 5 | 10 | mA |
| $\mathrm{I}_{\text {DDQ }}$ | Quiescent Supply Current | All VDD pins except AVDD | - | - | 8 | mA |
| $\mathrm{I}_{\mathrm{DD}}$ | Dynamic Supply Current | Outputs loaded @ 100 MHz | - | 225 | - | mA |
| $\mathrm{C}_{\text {IN }}$ | Input Pin Capacitance |  | - | 4 | - | pF |
| $\mathrm{Z}_{\text {out }}$ | Output Impedance |  | 12 | 15 | 18 | $\Omega$ |

Note: 1. Driving one $50 \Omega$ parallel-terminated transmission line to a termination voltage of VTT. Alternatively, each output drives up to two $50 \Omega$ series-terminated transmission lines
2. Inputs have pull-up or pull-down resistors that affect the input current.
rev 0.3
AC Electrical Specifications $\left(\mathrm{VDD}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)^{1}$

| Parameter | Description | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{vco}}$ | VCO Frequency |  | 200 | - | 380 | MHz |
| $\mathrm{fx}_{\text {XAL }}$ | Crystal Frequency Range | see Table 7 | 10 | - | 25 | MHz |
| $\mathrm{fin}^{\text {in }}$ | Input Frequency | $\div 4$ Feedback | 50 | - | 95 | MHz |
|  |  | $\div$ F Feedback | 33.3 | - | 63.3 |  |
|  |  | $\div 8$ Feedback | 25 | - | 47.5 |  |
|  |  | $\div 10$ Feedback | 20 | - | 38 |  |
|  |  | $\div 12$ Feedback | 16.6 | - | 31.6 |  |
|  |  | $\div 16$ Feedback | 12.5 | - | 23.75 |  |
|  |  | $\div 20$ Feedback | 10 | - | 19 |  |
|  |  | $\div 24$ Feedback | 8.3 | - | 15.8 |  |
|  |  | $\div 32$ Feedback | 6.25 | - | 11.8 |  |
|  |  | $\div 40$ Feedback | 5 | - | 9.5 |  |
|  |  | Bypass mode (PLL EN = 0) | 0 | - | 200 |  |
| $\mathrm{f}_{\text {refDC }}$ | Input Duty Cycle |  | 25 | - | 75 | \% |
| $\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | TCLK Input Rise/FallTime | 0.7 V to 1.7 V | - | - | 1.0 | nS |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Output Frequency | $\div 2$ Output | 100 | - | 190 | MHz |
|  |  | $\div 4$ Output | 50 | - | 95 |  |
|  |  | $\div 6$ Output | 33.3 | - | 63.3 |  |
|  |  | $\div 8$ Output | 25 | - | 47.5 |  |
|  |  | $\div 10$ Output | 20 | - | 38 |  |
|  |  | $\div 12$ Output | 16.6 | - | 31.6 |  |
|  |  | $\div 16$ Output | 12.5 | - | 23.75 |  |
|  |  | $\div 20$ Output | 10 | - | 19 |  |
|  |  | $\div 24$ Output | 8.3 | - | 15.8 |  |
| $\mathrm{f}_{\text {SCLK }}$ | Serial Clock Frequency | - | - | - | 20 | MHz |
| DC | Output Duty Cycle | fMAX $<100 \mathrm{MHz}$ | 47.5 | - | 52.5 | \% |
|  |  | fMAX > 100 MHz | 45 | - | 55 |  |
| $\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Output Rise/Fall times | 0.6 V to 1.8V | 0.1 | - | 1.0 | nS |
| $\mathrm{t}_{(\varphi)}$ | Propagation Delay (static phase offset) | TCLK to FB_IN | -125 | - | 125 | pS |
| $\mathrm{t}_{\text {sk(O) }}$ | Output-to-Output Skew | Skew within Bank A | - | - | 75 | pS |
|  |  | Skew within Bank B | - | - | 100 |  |
|  |  | Skew within Bank C | - | - | 150 |  |
| $\mathrm{t}_{\text {sk( }(\mathrm{B})}$ | Bank-to-Bank Skew |  | - | - | 400 | pS |
| tPLZ, HZ | Output Disable Time |  | - | - | 10 | nS |
| tpzL, ZH | Output Enable Time |  | - | - | 10 | nS |
| BW | PLL Closed Loop Bandwidth ( -3 dB ) | $\div 4$ Feedback | - | 1.3-2.0 | - | MHz |
|  |  | $\div 6$ Feedback | - | 0.7-1.3 | - |  |
|  |  | $\div 8$ Feedback | - | 0.9-1.3 | - |  |
|  |  | $\div 10$ Feedback | - | 0.6-1.1 | - |  |
|  |  | $\div 12$ Feedback | - | 0.6-0.9 | - |  |
|  |  | $\div 16$ Feedback | - | 0.4-0.6 | - |  |
|  |  | $\div 20$ Feedback | - | 0.6-0.9 | - |  |

Note: 1. AC characteristics apply for parallel output termination of $50 \Omega$ to VTT. Outputs are at same supply voltage unless otherwise stated. Parameters are guaranteed by characterization and are not $100 \%$ tested.
rev 0.3
AC Electrical Specifications $\left(\mathrm{VDD}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)(\text { Continued })^{6}$

| Parameter | Description | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{JT} \text { (CC) }}$ | Cycle-to-Cycle Jitter | ```Same frequency (125 MHz) RMS (1\sigma)``` | - | 7 | 30 | pS |
|  |  | Same frequency | - | - | 150 |  |
|  |  | Multiple frequencies | - | - | 435 |  |
| $\mathrm{t}_{\text {JIT(PER) }}$ | Period Jitter | $\begin{aligned} & \text { Same frequency (125 MHz) } \\ & \text { RMS (1б) } \end{aligned}$ | - | 6 | 30 | pS |
|  |  | Same frequency | - | 45 | 75 |  |
|  |  | Multiple frequencies | - | - | 235 |  |
| $\mathrm{t}_{\text {IT( }(\text { ) }}$ | I/O Phase Jitter |  | - | - | 150 | pS |
| $\mathrm{t}_{\text {Lock }}$ | Maximum PLL Lock Time |  | - | - | 1 | mS |

AC Parameters (VDD $=3.3 \mathrm{~V} \pm 5 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)^{6}$

| Parameter | Description | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{Vco}}$ | VCO Frequency |  | 200 | - | 500 | MHz |
| $\mathrm{f}_{\text {XTAL }}$ | Crystal Frequency Range | see Table 7 | 10 | - | 25 | MHz |
| $\mathrm{fin}_{\text {in }}$ | Input Frequency | $\div 4$ Feedback | 50 | - | 125 | MHz |
|  |  | $\div 6$ Feedback | 33.3 | - | 83.3 |  |
|  |  | $\div 8$ Feedback | 25 | - | 62.5 |  |
|  |  | $\div 10$ Feedback | 20 | - | 50 |  |
|  |  | $\div 12$ Feedback | 16.6 | - | 41.6 |  |
|  |  | $\div 16$ Feedback | 12.5 | - | 31.25 |  |
|  |  | $\div 20$ Feedback | 10 | - | 25 |  |
|  |  | $\div 24$ Feedback | 8.3 | - | 20.8 |  |
|  |  | $\div 32$ Feedback | 6.25 | - | 15.625 |  |
|  |  | $\div 40$ Feedback | 5 | - | 12.5 |  |
|  |  | Bypass mode (PLL_EN = 0) | 0 | - | 200 |  |
| frefDC | Input Duty Cycle | - | 25 | - | 75 | \% |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | TCLK Input Rise/FallTime | 0.8 V to 2.0 V | - | - | 1.0 | nS |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Outpùt Frequency | $\div 2$ Output | 100 | - | 200 | MHz |
|  |  | $\div 4$ Output | 50 | - | 125 |  |
|  |  | $\div 6$ Output | 33.3 | - | 83.3 |  |
|  |  | $\div 8$ Output | 25 | - | 62.5 |  |
|  |  | $\div 10$ Output | 20 | - | 50 |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Output Frequency (continued) | $\div 12$ Output | 16.6 | - | 41.6 | MHz |
|  |  | $\div 16$ Output | 12.5 | - | 31.25 |  |
|  |  | $\div 20$ Output | 10 | - | 25 |  |
|  |  | $\div 24$ Output | 8.3 | - | 20.8 |  |
| fsclk | Serial Clock Frequency |  | - | - | 20 | MHz |
| DC | Output Duty Cycle | $\mathrm{f}_{\text {MAX }}<100 \mathrm{MHz}$ | 48 | - | 52 | \% |
|  |  | $\mathrm{f}_{\text {MAX }}>100 \mathrm{MHz}$ | 45 | - | 55 |  |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Output Rise/Fall times | 0.55 V to 2.4 V | 0.1 | - | 1.0 | nS |
| $\mathrm{t}_{(\varphi)}$ | Propagation Delay (static phase offset) | TCLK to FB_IN, same VDD | -125 | - | 125 | pS |
| $\mathrm{t}_{\text {sk(0) }}$ | Output-to-Output Skew | Skew within Bank A | - | - | 75 | pS |
|  |  | Skew within Bank B | - | - | 100 |  |

rev 0.3
AC Parameters (VDD $=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)(\text { (Continued) })^{6}$

| Parameter | Description | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Skew within Bank C | - | - | 150 |  |
| $\mathrm{t}_{\text {sk(B) }}$ | Bank-to-Bank Skew |  | - | - | 325 | pS |
| tpLZ, HZ | Output Disable Time |  | - | - | 8 | nS |
| tpzL, ZH | Output Enable Time |  | - | - | 8 | nS |
| BW | PLL Closed-Loop Bandwidth (-3 dB) | $\div 4$ Feedback | - | 1.3-2.0 | - | MHz |
|  |  | $\div 6$ Feedback | - | 0.7-1.3 |  |  |
|  |  | $\div 8$ Feedback | - | 0.9-1.3 | - |  |
|  |  | $\div 10$ Feedback | - | 0.6-1.1 | - |  |
|  |  | $\div 12$ Feedback | - | 0.6-0.9 | - |  |
|  |  | $\div 16$ Feedback | - | 0.4-0.6 | - |  |
|  |  | $\div 20$ Feedback |  | 0.6-0.9 | - |  |
| $\mathrm{t}_{\text {IIT(CC) }}$ | Cycle-to-Cycle Jitter | $\begin{aligned} & \text { Same frequency ( } 125 \mathrm{MHz} \text { ) } \\ & \text { RMS (1б ) } \end{aligned}$ |  | 7 | 30 | pS |
|  |  | Same frequency |  | - | 100 |  |
|  |  | Multiple frequencies | - | - | 375 |  |
| $\mathrm{t}_{\mathrm{JIT} \text { (PER) }}$ | Period Jitter | Same frequency ( 125 MHz ) RMS (1б ) | - | 6 | 30 | pS |
|  |  | Same frequency | - | 45 | 75 |  |
|  |  | Multiple frequencies | - | - | 225 |  |
| $\mathrm{t}_{\text {JIT }(\varphi)}$ | I/O Phase Jitter | I/O same VDD | - | - | 150 | pS |
| tıock | Maximum PLL Lock Time | - ${ }^{\text {- }}$ | - | - | 1 | mS |

## Sync Output

In situations where output frequency relationships are not integer multiples of each other, the SYNC output provides a signal for system synchronization. The ASM5I9772A monitors the relationship between the QA and the QC output clocks. It provides a low going pulse, one period in duration, one period prior to the coincident rising edges of the QA and QC outputs.

The duration and the placement of the pulse depend on the higher of the QA and QC output frequencies. The following timing diagram illustrates various waveforms for the SYNC output. Note that the SYNC output is defined for all possible combinations of the QA and QC outputs even though under some relationships the lower frequency clock could be used as a synchronizing signal.
rev 0.3


Figure 1

## Power Management

The individual output enable / freeze control of the ASM519772A allows the user to implement unique power management schemes into the design. The outputs are stopped in the logic ' 0 ' state when the freeze control bits are activated. The serial input register contains one programmable freeze enable bit for 12 of the 14 output clocks. The QCO and FB_OUT outputs cannot be frozen with the serial port. This avoids any potential lock up situation should an error occur in the loading of the serial
data. An output is frozen when a logic ' 0 ' is programmed and enabled when a logic ' 1 ' is written. The enabling and freezing of individual outputs is done in such a manner as to eliminate the possibility of partial "runt" clocks. The serial input register is programmed through the SDATA input by writing a logic ' 0 ' start bit followed by 12 NRZ freeze enable bits. The period of each SDATA bit equals the period of the free running SCLK signal. The SDATA is sampled on the rising edge of SCLK.
rev 0.3
Start

Bit | D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Figure 2.
D0-D3 are the control bits for QAO-QA3, respectively D4-D7 are the control bits for QB0-QB3, respectively D8-D10 are the control bits for QC1-QC3, respectively D11 is the control bit for SYNC

Table 7. Suggested Oscillator Crystal Parameters

| Parameter | Description | Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Tc | Frequency Tolerance |  | - | - | $\pm 1100$ | PPM |
| Ts | Frequency Temperature Stability | $\left(\right.$ TA- $10^{\circ}$ to $\left.+60^{\circ} \mathrm{C}\right)$ | - | - | $\pm 100$ | PPM |
| TA | Aging | (First three years @ $\left.25^{\circ} \mathrm{C}\right)$ | - | - | 5 | PPM/Yr |
| CL | Load Capacitance | The crystal's rated load | - | 20 | - | pF |
| RESR | Effective Series Resistance <br> (ESR) |  | - | 40 | 80 | Ohm |



Figure 3. LVCMOS_CLK AC Test Reference for VDD $=3.3 \mathrm{~V} / 2.5 \mathrm{~V}$


Figure 4. LVCMOS Propagation Delay $\mathbf{t}(\phi)$, Static Phase Offset


DC = tP $/$ T0 $\times 100 \%$
Figure 5. Output Duty Cycle (DC)


Figure 6. Output-to-Output Skew, $\mathbf{t}_{\text {sk(0) }}$
rev 0.3

## Package Information


rev 0.3

## Ordering Information

| Part Number | Marking | Package Type | Operating Range |
| :--- | :--- | :--- | :---: |
| ASM5I9772A-52-ET | ASM5I9772A | 52-pin TQFP, Tray | Industrial |
| ASM5I9772A-52-ER | ASM5I9772A | 52-pin TQFP - Tape and Reel | Industrial |
| ASM5I9772AG-52-ET | ASM5I9772AG | 52-pin TQFP, Tray, Green | Industrial |
| ASM5I9772AG-52-ER | ASM5I9772AG | 52-pin TQFP - Tape and Reel, Green | Industrial |

## Device Ordering Information



ALLIANCE SEMICONDUCTOR MIXED SIGNAL PRODUCT
rev 0.3


Note: This product utilizes US Patent \# 6,646,463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003
© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.

